Learning from deep revolutionary time
نویسندگان
چکیده
منابع مشابه
Deep learning from crowds
Over the last few years, deep learning has revolutionized the field of machine learning by dramatically improving the state-of-the-art in various domains. However, as the size of supervised artificial neural networks grows, typically so does the need for larger labeled datasets. Recently, crowdsourcing has established itself as an efficient and cost-effective solution for labeling large sets of...
متن کاملTricks from Deep Learning
The deep learning [1, 2, 3] community has devised a diverse set of methods to make gradient optimization, using large datasets, of large and highly complex models with deeply cascaded nonlinearities, practical. Taken as a whole, these methods constitute a breakthrough, allowing computational structures which are quite wide, very deep, and with an enormous number and variety of free parameters t...
متن کاملIntegration of remote sensing and meteorological data to predict flooding time using deep learning algorithm
Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...
متن کاملDeep Learning for Real Time Crime Forecasting
Accurate real time crime prediction is a fundamental issue for public safety, but remains a challenging problem for the scientific community. Crime occurrences depend on many complex factors. Compared to many predictable events, crime is sparse. At different spatiotemporal scales, crime distributions display dramatically different patterns. These distributions are of very low regularity in both...
متن کاملLearning Deep Representations of Time Series
Time series data are ubiquitous. The explosion of new sensing technologies (wearable sensors, satellites, mobile phones, etc.), combined with increasingly cheap and effective storage, is generating an unprecedented and growing amount of time series data in a variety of domains [1]. Understanding this time series data is important for many Artificial Intelligence tasks. Recently, recurrent neura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ethnic and Racial Studies
سال: 2016
ISSN: 0141-9870,1466-4356
DOI: 10.1080/01419870.2016.1109679